
Selected Solutions for Chapter 24:
Single-Source Shortest Paths

Solution to Exercise 24.1-3

If the greatest number of edges on any shortest path from the source ism, then the
path-relaxation property tells us that afterm iterations of BELLMAN -FORD, every
vertex� has achieved its shortest-path weight in�:d. By the upper-bound property,
afterm iterations, nod values will ever change. Therefore, nod values will change
in the.m C 1/st iteration. Because we do not knowm in advance, we cannot make
the algorithm iterate exactlym times and then terminate. But if we just make the
algorithm stop when nothing changes any more, it will stop afterm C 1 iterations.

BELLMAN -FORD-(M+1).G; w; s/

INITIALIZE -SINGLE-SOURCE.G; s/

changes D TRUE

while changes == TRUE

changes D FALSE

for each edge.u; �/ 2 G:E
RELAX -M.u; �; w/

RELAX -M.u; �; w/

if �:d > u:d C w.u; �/

�:d D u:d C w.u; �/

�:� D u

changes D TRUE

The test for a negative-weight cycle (based on there being ad value that would
change if another relaxation step was done) has been removedabove, because this
version of the algorithm will never get out of thewhile loop unless alld values
stop changing.

Solution to Exercise 24.3-3

Yes, the algorithm still works. Letu be the leftover vertex that does not
get extracted from the priority queueQ. If u is not reachable froms, then



24-2 Selected Solutions for Chapter 24: Single-Source Shortest Paths

u:d D ı.s; u/ D 1. If u is reachable froms, then there is a shortest path
p D s ; x ! u. When the nodex was extracted,x:d D ı.s; x/ and then the
edge.x; u/ was relaxed; thus,u:d D ı.s; u/.

Solution to Exercise 24.3-6

To find the most reliable path betweens andt , run Dijkstra’s algorithm with edge
weightsw.u; �/ D � lg r.u; �/ to find shortest paths froms in O.ECV lg V / time.
The most reliable path is the shortest path froms to t , and that path’s reliability is
the product of the reliabilities of its edges.

Here’s why this method works. Because the probabilities areindependent, the
probability that a path will not fail is the product of the probabilities that its edges
will not fail. We want to find a paths

p
; t such that

Q
.u;�/2p r.u; �/ is maximized.

This is equivalent to maximizing lg.
Q

.u;�/2p r.u; �// D
P

.u;�/2p lg r.u; �/, which
is in turn equivalent to minimizing

P
.u;�/2p � lg r.u; �/. (Note: r.u; �/ can be 0,

and lg0 is undefined. So in this algorithm, define lg0 D �1.) Thus if we assign
weightsw.u; �/ D � lg r.u; �/, we have a shortest-path problem.

Since lg1 = 0, lgx < 0 for 0 < x < 1, and we have defined lg0 D �1, all the
weightsw are nonnegative, and we can use Dijkstra’s algorithm to find the shortest
paths froms in O.E C V lg V / time.

Alternate answer

You can also work with the original probabilities by runninga modified version of
Dijkstra’s algorithm that maximizes the product of reliabilities along a path instead
of minimizing the sum of weights along a path.

In Dijkstra’s algorithm, use the reliabilities as edge weights and substitute

� max (and EXTRACT-MAX ) for min (and EXTRACT-M IN) in relaxation and the
queue,

� � for C in relaxation,
� 1 (identity for �) for 0 (identity forC) and�1 (identity for min) for1 (identity

for max).

For example, we would use the following instead of the usual RELAX procedure:

RELAX -RELIABILITY .u; �; r/

if �:d < u:d � r.u; �/

�:d D u:d � r.u; �/

�:� D u

This algorithm is isomorphic to the one above: it performs the same operations
except that it is working with the original probabilities instead of the transformed
ones.



Selected Solutions for Chapter 24: Single-Source Shortest Paths 24-3

Solution to Exercise 24.4-7

Observe that after the first pass, alld values are at most0, and that relaxing
edges.�0; �i / will never again change ad value. Therefore, we can eliminate�0 by
running the Bellman-Ford algorithm on the constraint graphwithout the�0 node
but initializing all shortest path estimates to0 instead of1.

Solution to Exercise 24.5-4

Whenever RELAX sets� for some vertex, it also reduces the vertex’sd value.
Thus if s:� gets set to a non-NIL value,s:d is reduced from its initial value of0 to
a negative number. Buts:d is the weight of some path froms to s, which is a cycle
includings. Thus, there is a negative-weight cycle.

Solution to Problem 24-3

a. We can use the Bellman-Ford algorithm on a suitable weighted, directed graph
G D .V; E/, which we form as follows. There is one vertex inV for each
currency, and for each pair of currenciesci and cj , there are directed edges
.�i ; �j / and.�j ; �i/. (Thus,jV j D n andjEj D n.n � 1/.)

To determine edge weights, we start by observing that

RŒi1; i2� � RŒi2; i3� � � � RŒik�1; ik� � RŒik; i1� > 1

if and only if

1

RŒi1; i2�
�

1

RŒi2; i3�
� � �

1

RŒik�1; ik�
�

1

RŒik; i1�
< 1 :

Taking logs of both sides of the inequality above, we expressthis condition as

lg
1

RŒi1; i2�
C lg

1

RŒi2; i3�
C � � � C lg

1

RŒik�1; ik �
C lg

1

RŒik; i1�
< 0 :

Therefore, if we define the weight of edge.�i ; �j / as

w.�i ; �j / D lg
1

RŒi; j �

D � lg RŒi; j � ;

then we want to find whether there exists a negative-weight cycle in G with
these edge weights.

We can determine whether there exists a negative-weight cycle in G by adding
an extra vertex�0 with 0-weight edges.�0; �i / for all �i 2 V , running
BELLMAN -FORD from �0, and using the boolean result of BELLMAN -FORD

(which is TRUE if there are no negative-weight cycles andFALSE if there is a



24-4 Selected Solutions for Chapter 24: Single-Source Shortest Paths

negative-weight cycle) to guide our answer. That is, we invert the boolean result
of BELLMAN -FORD.

This method works because adding the new vertex�0 with 0-weight edges
from �0 to all other vertices cannot introduce any new cycles, yet itensures
that all negative-weight cycles are reachable from�0.

It takes‚.n2/ time to createG, which has‚.n2/ edges. Then it takesO.n3/

time to run BELLMAN -FORD. Thus, the total time isO.n3/.

Another way to determine whether a negative-weight cycle exists is to createG
and, without adding�0 and its incident edges, run either of the all-pairs shortest-
paths algorithms. If the resulting shortest-path distancematrix has any negative
values on the diagonal, then there is a negative-weight cycle.

b. Assuming that we ran BELLMAN -FORD to solve part (a), we only need to find
the vertices of a negative-weight cycle. We can do so as follows. First, relax
all the edges once more. Since there is a negative-weight cycle, thed value of
some vertexu will change. We just need to repeatedly follow the� values until
we get back tou. In other words, we can use the recursive method given by the
PRINT-PATH procedure of Section 22.2, but stop it when it returns to vertexu.

The running time isO.n3/ to run BELLMAN -FORD, plus O.n/ to print the
vertices of the cycle, for a total ofO.n3/ time.


